Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2973-2992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544951

RESUMEN

Background: For maintenance therapy in type 2 diabetes, glucagon-like peptide-1 agonist (GLP-1A), which exhibits low cardiovascular risk and high efficacy, is a promising peptide therapeutic. However, developing an oral GLP-1A presents challenges due to the analog's poor cellular permeability and gastrointestinal (GI) stability. Methods: To mitigate such limitations, an oral nanoformulation of liraglutide (LG) was designed and achieved by combining LG with bile acid derivatives using the nanoprecipitation method. This strategy allowed the bile acid moieties to localize at the nanoparticle surface, enhancing the binding affinity for apical sodium-dependent bile acid transporter (ASBT) and improving GI stability. The in vitro characteristics, cellular permeability, and absorption mechanisms of the LG nanoformulation (LG/TD-NF) were thoroughly investigated. Furthermore, the in vivo oral absorption in rats and the glucose-lowering effects in a diabetic (db/db) mouse model were evaluated. Results: The LG/TD-NF produced neutral nanoparticles with a diameter of 58.7 ± 4.3 nm and a zeta potential of 4.9 ± 0.4 mV. Notably, when exposed to simulated gastric fluid, 65.7 ± 3.6% of the LG/TD-NF remained stable over 120 min, while free LG was fully degraded. Relative to unformulated LG, the Caco-2 cellular permeability of the nanoformulation improved, measuring 10.9 ± 2.1 (× 10-6 cm/s). The absorption mechanism prominently featured endocytosis simultaneously mediated by both ASBT and epidermal growth factor receptor (EGFR). The oral bioavailability of the LG/TD-NF was determined to be 3.62% at a dosage of 10 mg/kg, which is 45.3 times greater than that of free LG. In a diabetes model, LG/TD-NF at 10 mg/kg/day exhibited commendable glucose sensitivity and reduced HbA1c levels by 4.13% within 28 days, similar to that of subcutaneously administered LG at a dosage of 0.1 mg/kg/day. Conclusion: The oral LG/TD-NF promotes ASBT/EGFR-mediated transcytosis and assures cellular permeability within the GI tract. This method holds promise for the development of oral GLP-1A peptides as an alternative to injections, potentially enhancing patient adherence to maintenance therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Ratones , Ratas , Animales , Liraglutida/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células CACO-2 , Péptido 1 Similar al Glucagón/uso terapéutico , Tracto Gastrointestinal/metabolismo , Ácidos y Sales Biliares , Glucosa , Receptores ErbB , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
2.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38136148

RESUMEN

Filamentous fungi produce several beneficial secondary metabolites, including bioactive compounds, food additives, and biofuels. Trichoderma, which is a teleomorphic Hypocrea that falls under the taxonomic groups Ascomycota and Dikarya, is an extensively studied fungal genus. In an ongoing study that seeks to discover bioactive natural products, we investigated potential bioactive metabolites from the methanolic extract of cultured Trichoderma gamsii. Using liquid chromatography-mass spectrometry (LC-MS), one major compound was isolated and structurally identified as 6-pentyl-α-pyrone (6PP) based on nuclear magnetic resonance data and LC-MS analysis. To determine its antioxidant and anti-inflammatory activity, as well as the underlying mechanisms, we treated lipopolysaccharide (LPS)-stimulated Raw264.7 mouse macrophages with 6PP. We found that 6PP suppresses LPS-induced increase in the levels of nitric oxide, a mediator of oxidative stress and inflammation, and restores LPS-mediated depletion of total glutathione by stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidative factor, and elevating heme oxygenase-1 levels. Furthermore, 6PP inhibited LPS-induced production of proinflammatory cytokines, which are, at least in part, regulated by heme oxygenase-1 (HO-1). 6PP suppressed proinflammatory responses by inhibiting the nuclear localization of nuclear factor kappa B (NF-κB), as well as by dephosphorylating the mitogen-activated protein kinases (MAPKs). These results indicate that 6PP can protect macrophages against oxidative stress and LPS-induced excessive inflammatory responses by activating the Nrf2/HO-1 pathway while inhibiting the proinflammatory, NF-κB, and MAPK pathways.

3.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37891872

RESUMEN

Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.

4.
J Control Release ; 364: 37-45, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813125

RESUMEN

Post-transplantation tracking of pancreatic islets is a prerequisite for advancing cell therapy to treat type 1 diabetes. Magnetic resonance imaging (MRI) has emerged as a safe and non-invasive technique for visualizing cells in clinical applications. In this study, we proposed a novel MRI contrast agent formulation by encapsulating iron oxide nanoparticles (IONPs) in poly(lactic-co-glycolic acid) (PLGA) particles functionalized with a tissue adhesive polydopamine (PD) layer (IONP-PLGA-PD MS). Intriguingly, our particles facilitated efficient and robust labeling through a one-step process, allowing for the incorporation of a substantial amount of IONPs without detrimental impacts on the viability and functionality of pancreatic islets. The MRI signals emanating from islets labeled using our particles were found to be stable over 30 days in vitro and 60 days when transplanted under kidney capsules of diabetic mice. These results suggest that our approach provides a potential platform for monitoring the fate of pancreatic islets after transplantation.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Nanopartículas de Magnetita , Adhesivos Tisulares , Ratones , Animales , Trasplante de Islotes Pancreáticos/métodos , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/diagnóstico por imagen , Islotes Pancreáticos/metabolismo , Imagen por Resonancia Magnética/métodos
5.
Biomater Res ; 27(1): 83, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660070

RESUMEN

BACKGROUND: Despite the effectiveness of glucagon-like peptide-1 agonist (GLP-1A) in the treatment of diabetes, its large molecular weight and high hydrophilicity result in poor cellular permeability, thus limiting its oral bioavailability. To address this, we developed a chimeric GLP-1A that targets transporter-mediated endocytosis to enhance cellular permeability to GLP-1A by utilizing the transporters available in the intestine, particularly the apical sodium-dependent bile acid transporter (ASBT). METHODS: In silico molecular docking and molecular dynamics simulations were used to investigate the binding interactions of mono-, bis-, and tetra-deoxycholic acid (DOCA) (monoDOCA, bisDOCA, and tetraDOCA) with ASBT. After synthesizing the chimeric GLP-1A-conjugated oligomeric DOCAs (mD-G1A, bD-G1A, and tD-G1A) using a maleimide reaction, in vitro cellular permeability and insulinotropic effects were assessed. Furthermore, in vivo oral absorption in rats and hypoglycemic effect on diabetic db/db mice model were evaluated. RESULTS: In silico results showed that tetraDOCA had the lowest interaction energy, indicating high binding affinity to ASBT. Insulinotropic effects of GLP-1A-conjugated oligomeric DOCAs were not different from those of GLP-1A-Cys or exenatide. Moreover, bD-G1A and tD-G1A exhibited improved in vitro Caco-2 cellular permeability and showed higher in vivo bioavailability (7.58% and 8.63%) after oral administration. Regarding hypoglycemic effects on db/db mice, tD-G1A (50 µg/kg) lowered the glucose level more than bD-G1A (50 µg/kg) compared with the control (35.5% vs. 26.4%). CONCLUSION: GLP-1A was conjugated with oligomeric DOCAs, and the resulting chimeric compound showed the potential not only for glucagon-like peptide-1 receptor agonist activity but also for oral delivery. These findings suggest that oligomeric DOCAs can be used as effective carriers for oral delivery of GLP-1A, offering a promising solution for enhancing its oral bioavailability and improving diabetes treatment.

6.
J Control Release ; 356: 507-524, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907564

RESUMEN

We developed an orally delivered nanoemulsion that induces cancer immunization. It consists of tumor antigen-loaded nano-vesicles carrying the potent invariant natural killer T-cell (iNKT) activator α-galactosylceramide (α-GalCer), to trigger cancer immunity by effectively activating both innate and adaptive immunity. It was validated that adding bile salts to the system boosted intestinal lymphatic transport as well as the oral bioavailability of ovalbumin (OVA) via the chylomicron pathway. To increase intestinal permeability further and amplify the antitumor responses, an ionic complex of cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DTP) with sodium deoxycholate (DA) (DDP) and α-GalCer were anchored onto the outer oil layer to form OVA-NE#3. As expected, OVA-NE#3 exhibited tremendously improved intestinal cell permeability as well as enhanced delivery to mesenteric lymph nodes (MLNs). Subsequent activation of dendritic cells and iNKTs, in MLNs were also observed. Tumor growth in OVA-expressing mice with melanoma was more strongly suppressed (by 71%) after oral administration of OVA-NE#3 than in untreated controls, confirming the strong immune response induced by the system. The serum levels of OVA-specific IgG1 and IgG2a were 3.52- and 6.14-fold higher than in controls. Treating OVA-NE#3 increased the numbers of tumor-infiltrating lymphocytes, including cytotoxic T-cell and M1-like macrophage. Antigen- and α-GalCer-associated enrichment of dendritic cells and iNKTs in tumor tissues also increased after OVA-NE#3 treatment. These observations indicate that our system induces both cellular and humoral immunity by targeting the oral lymphatic system. It may offer a promising oral anti-cancer vaccination strategy that involves the induction of systemic anti-cancer immunization.


Asunto(s)
Antígenos de Neoplasias , Melanoma , Ratones , Animales , Ovalbúmina , Inmunización , Ratones Endogámicos C57BL
7.
Biomaterials ; 290: 121804, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36194955

RESUMEN

Pancreatic islet transplantation holds great potential as a curative therapy for treating type 1 diabetes. However, the need for lifelong systemic immunosuppression with inevitable side effects is an obstacle to clinical success. Here we devised a strategy for the site-specific delivery of an immunosuppressant (tacrolimus) using layer-by-layer assembly of polymeric particles and collagen on the islet surface. This approach aims to provide a continuous and sustained supply of tacrolimus in the vicinity of transplanted cells while avoiding systemic drug exposure. The dose and release rate of tacrolimus can be tunable to achieve therapeutic windows by varying layer-by-layer construction and chemistry of polymers. Transplanting 400 IEQ of pancreatic islets coated with particles containing ∼3 µg of TAC per recipient provided controlled drug release and rectified diabetes for up to 5 months in a xenogeneic rodent model of type 1 diabetes. We anticipate that the findings of this study will be found useful by those developing local immunomodulation strategies aimed at improving the outcomes and safety of cell therapies for curing type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Supervivencia de Injerto , Tacrolimus/uso terapéutico , Tacrolimus/farmacología , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Inmunosupresores/uso terapéutico , Inmunosupresores/metabolismo , Polímeros/farmacología , Colágeno/metabolismo
8.
Biomaterials ; 289: 121783, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084486

RESUMEN

While conventional approaches for PTEN-loss cancers mainly focus on turning off growth promoting process through modulation of PI3K/AKT pathways, no effective therapeutic treatments that target PTEN-loss cancer cells have yielded results. Moreover, conventional targeted therapies, which are potent against only a subset of cancer cells with limited specificity, bring on temporary response. Here, we report the development of albumin-binding caspase-3 cleavable peptide-drug conjugate (PDC), which utilizes the enhanced albumin metabolism pathway in PTEN-loss cancer cells to enhance the intracellular delivery of chemotherapeutic payload that could exert a bystander killing effect. Albumin metabolism-mediated apoptosis triggered expression of caspase-3 allows the continuous activation of the PDC, accumulation of payloads, sustained upregulation of tumoral caspase-3, and intensified in-situ apoptosis. Importantly, PDC strategy exerts potent therapeutic efficacy against PTEN-loss metastatic triple-negative breast cancer, the highly aggressive and heterogenous nature of which remains a challenge conventional targeted therapies need to overcome. This study thus presents a conceptually novel approach to treat PTEN-loss cancer and creates new translational perspectives of exploiting PTEN-loss for providing an avenue to advance current targeted therapy.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Albúminas , Caspasa 3 , Línea Celular Tumoral , Femenino , Humanos , Fosfohidrolasa PTEN/metabolismo , Péptidos , Preparaciones Farmacéuticas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
9.
Biomaterials ; 286: 121584, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617783

RESUMEN

In conventional chemotherapy, maximum tolerated dose approach is considered as a first-line medication for cancer treatment in clinics. In contrast to the conventional chemotherapy which has heavy tumor burdens arising from high dose treatment, metronomic chemotherapy (MCT) engages relatively low dose without drug-free breaks, and is recognized as a promising strategy for a long-term management of the disease. Although doxorubicin (DOX), an anthracycline anti-cancer drug, showed a potential of maintenance effect in vitro, further study on in vivo-relevant concentration to achieve tumor suppression with no toxicity is required to apply the MCT in clinicals. Therefore, the objective of this study was to identify an optimal MCT regimen of DOX by determining concentration-response relationships of tumor suppression (pharmacodynamic; PD) and cardiac toxicity (toxicodynamic; TD). Utilizing an oral DOX formulation complexed with deoxycholic acid (DOX/DOCA complex) which has enhanced bioavailability, physiologically-based pharmacokinetic (PBPK) model was linked to TD and PD models to generate drug profiles from the combined PK, TD, and PD parameters. The integrated model was validated for various scenarios of administration route, formulation, dose, and frequency. The established mathematical model facilitated calculations of adequate in vivo-relevant dosages and intervals, suggesting the optimum oral metronomic regimen of DOX. It is expected to serve as a useful guideline for the design and evaluation of oral DOX formulations in future preclinical/clinical studies.


Asunto(s)
Doxorrubicina , Neoplasias , Administración Metronómica , Antibióticos Antineoplásicos , Doxorrubicina/uso terapéutico , Humanos , Modelos Teóricos , Neoplasias/tratamiento farmacológico
10.
J Control Release ; 346: 136-147, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447298

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by its highly heterogeneous microenvironment and propensity for aggressive behavior, both of which represent, along with poor prognosis and high incidence of relapse, the main challenges of curing the disease. Although recent progress in targeted chemotherapy combinations has shown promising outcomes, conventional targeted chemotherapeutic approaches have relied on exploiting the expression of certain molecules or proteins overexpressed on cancer cells as drug targets, which have demonstrated limited clinical benefit against metastatic cancers. Here, we describe a tumoral caspase-3 mediated peptide-doxorubicin conjugates (PDC) switch therapy that adopts two different caspase-3 cleavable PDCs, RGDEVD-DOX (TPD1) and EMC-KGDEVD-DOX (MPD1), for targeting metastatic triple-negative breast cancer (mTNBC). First, using TPD1, an integrin αVß3 based targeted strategy was utilized to target tumor cells or tumor vasculature associated with the highly malignant progression of mTNBC. TPD1 triggered the tumor cell-specific initial apoptosis and the induction of caspase-3 expression in the target tumor site. Then MPD1 was administered sequentially, which is an albumin-binding prodrug, and activated by induced caspase-3 in order to maintain the tumoral caspase-3 level and release the cytotoxic payload. The PDC switch therapy markedly accumulated doxorubicin in the tumor site and augmented tumor-specific in situ amplification of apoptosis. Importantly, the PDC switch therapy exerted a bystander killing effect on the neighboring cancer cells thus demonstrating potent therapeutic efficacy against both local and metastatic cancers. Given the limited therapeutic outcomes with conventional targeted therapies, our strategy of regulating the expression of caspase-3 level as a drug target could provide as a more durable and effective alternative in the treatment of highly heterogeneous mTNBC.


Asunto(s)
Antineoplásicos , Profármacos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/uso terapéutico , Caspasa 3/metabolismo , Línea Celular Tumoral , Doxorrubicina , Humanos , Péptidos/química , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral
11.
Biomaterials ; 283: 121423, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35220018

RESUMEN

Growth factors (GF) regulate normal development to cancer progression. GFs interact with extracellular matrix (ECM) biomolecules, such as heparin sulfate (HS) glycosaminoglycan (GAG), to enhance their stability and angiogenic signaling. Biomaterials that modulate GF activity by mimicking interactions observed in the native ECM could be designed as an effective treatment strategy. However, these materials failed to attenuate angiogenic signaling site-specifically without sparing normal tissues. In this work, we investigated the effect of a GAG-based biomaterial, which binds to the tumor endothelial cells (TEC), on the interaction among vascular endothelial growth factor (VEGF), its receptors-VEGFR2 and HS-and angiogenesis. Heparin-bile acid based conjugates, as ECM-mimicking component, were synthesized to selectively target the TEC marker doppel and doppel/VEGFR2 axis. The most effective compound LHbisD4 (low molecular weight heparin conjugated with 4 molecules of dimeric dexocholic acid) reduced tumor volume concentrated over doppel-expressing EC, and decreased tumor-interstitial VEGF without affecting its plasma concentration. Doppel-destined LHbisD4 captured VEGF, formed an intermediate complex with doppel, VEGFR2, and VEGF but did not induce active VEGFR2 dimerization, and competitively inhibited HS for VEGF binding. We thus show that GAG-based materials can be designed to imitate and leverage to control tumor microenvironment via bio-inspired interactions.


Asunto(s)
Células Endoteliales , Glicosaminoglicanos , Neoplasias , Células Endoteliales/metabolismo , Glicosaminoglicanos/farmacología , Humanos , Neoplasias/patología , Neovascularización Patológica/patología , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Biomaterials ; 281: 121334, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974206

RESUMEN

In this study, we investigated the immune-modulating effects of a novel metronomic chemotherapy (MCT) featuring combined oral oxaliplatin (OXA) and pemetrexed (PMX) for colon cancer. OXA and PMX were ionically complexed with lysine derivative of deoxycholic acid (DCK), and incorporated into nanoemulsions or colloidal dispersions, yielding OXA/DCK-NE and PMX/DCK-OP, respectively, to improve their oral bioavailabilities. MCT was not associated with significant lymphotoxicity whereas the maximum tolerated dose (MTD) afforded systemic immunosuppression. MCT was associated with more immunogenic cell death and tumor cell MHC-class I expression than was MTD. MCT improved the tumor antigen presentation of dendritic cells and increased the number of functional T cells in the tumor. MCT also helped to enhance antigen-specific memory responses both locally and systemically. By combining MCT with anti-programmed cell death protein-1 (αPD-1) therapy, the tumor volume was suppressed by 97.85 ± 84.88% compared to the control, resulting in a 95% complete response rate. Upon re-challenge, all tumor-free mice rejected secondary tumors, indicating the induction of a tumor specific memory response. Thus, MCT using an OXA and PMX combination, together with αPD-1, successfully treated colon cancer by activating both innate and adaptive immune cells and elicited tumor-specific long-term immune memory while avoiding toxicity caused by MTD treatment.


Asunto(s)
Neoplasias del Colon , Administración Oral , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Inmunoterapia , Ratones , Oxaliplatino/uso terapéutico
13.
Drug Deliv ; 28(1): 2313-2328, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34730056

RESUMEN

In this study, we developed oral pemetrexed (PMX) for metronomic dosing to enhance antitumor immunity. PMX was electrostatically complexed with positively charged lysine-linked deoxycholic acid (DL) as an intestinal permeation enhancer, forming PMX/DL, to enhance its intestinal permeability. PMX/DL was also incorporated into a colloidal dispersion (CD) comprised of the block copolymer of poly(ethylene oxide) and poly(propylene oxide), and caprylocaproyl macrogol-8 glycerides (PMX/DL-CD). CD-containing PMX/DL complex in a 1:1 molar ratio [PMX/DL(1:1)-CD] showed 4.66- and 7.19-fold greater permeability than free PMX through the Caco-2 cell monolayer and rat intestine, respectively. This resulted in a 282% improvement in oral bioavailability in rats. In addition, low-dose metronomic PMX led to more immunogenic cell death in CT26.CL25 cells compared to high PMX concentrations at the maximum tolerated dose. In CT26.CL25 tumor-bearing mice, oral metronomic PMX/DL-CD elicited greater antitumor immunity not only by enhancing the number of tumor-infiltrating lymphocytes but also by suppressing T cell functions. Oral PMX/DL-CD substantially increased programmed cell death protein ligand-1 (PD-L1) expression on tumor cells compared to the control and PMX-IV groups. This increased antitumor efficacy in combination with anti-programmed cell death protein-1 (aPD-1) antibody in terms of tumor rejection and immunological memory compared to the combination of PMX-IV and aPD-1. These results suggest that oral metronomic scheduling of PMX/DL-CD in combination with immunotherapy has synergistic antitumor effects.


Asunto(s)
Administración Metronómica , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Neoplasias/patología , Pemetrexed/administración & dosificación , Pemetrexed/farmacología , Administración Oral , Animales , Antígeno B7-H1/efectos de los fármacos , Línea Celular Tumoral , Química Farmacéutica , Ácido Desoxicólico/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Biomaterials ; 277: 121105, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478928

RESUMEN

Here we report a novel combination of a caspase-cleavable peptide-doxorubicin conjugate (MPD-1) with CD47-antagonizing nanocage therapeutics for the treatment of microsatellite-stable (MSS) colorectal cancer (CRC). MPD-1 (i) upregulated markers of immunogenic cell death (ICD) in tumor, and increased co-stimulatory markers on dendritic cells (DCs), (ii) enhanced CD8+ T cell infiltration and antigen presenting cell (APC) activation, and (iii) showed negligible off-target immune-related toxicity compared to free dox. Then, the CD47 antagonist FS nanocage, a SIRPα-expressing ferritin nanocage, was co-administered with MPD-1 that resulted in 95.2% (p < 0.001) tumor growth inhibition in an established CRC model. T cell-mediated elimination of tumors was also confirmed by the tumor-specific activation of T cells detected by IFNγ and tumor-free mice were observed (95%) that bared a memory response when re-challenged. The strategically developed MPD-1 is an ideal adjuvant to immunotherapy and the combination with FS nanocage triggers potent immunity against MSS CRC. In summary, we present an approach to initiate and stimulate immune-mediated eradication of cancer cells using synergistic immunogenic agents targeting the MSS CRC.


Asunto(s)
Antígeno CD47 , Neoplasias Colorrectales , Animales , Caspasas , Neoplasias Colorrectales/tratamiento farmacológico , Doxorrubicina/uso terapéutico , Inmunoterapia , Ratones , Péptidos
15.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341129

RESUMEN

PURPOSE: Here, this study verifies that cancer-associated thrombosis (CAT) accelerates hypoxia, which is detrimental to the tumor immune microenvironment by limiting tumor perfusion. Therefore, we designed an oral anticoagulant therapy to improve the immunosuppressive tumor microenvironment and potentiate the efficacy of immunotherapy by alleviating tumor hypoxia. EXPERIMENTAL DESIGN: A novel oral anticoagulant (STP3725) was developed to consistently prevent CAT formation. Tumor perfusion and hypoxia were analyzed with or without treating STP3725 in wild-type and P selectin knockout mice. Immunosuppressive cytokines and cells were analyzed to evaluate the alteration of the tumor microenvironment. Effector lymphocyte infiltration in tumor tissue was assessed by congenic CD45.1 mouse lymphocyte transfer model with or without anticoagulant therapy. Finally, various tumor models including K-Ras mutant spontaneous cancer model were employed to validate the role of the anticoagulation therapy in enhancing the efficacy of immunotherapy. RESULTS: CAT was demonstrated to be one of the perfusion barriers, which fosters immunosuppressive microenvironment by accelerating tumor hypoxia. Consistent treatment of oral anticoagulation therapy was proved to promote tumor immunity by alleviating hypoxia. Furthermore, this resulted in decrease of both hypoxia-related immunosuppressive cytokines and myeloid-derived suppressor cells while improving the spatial distribution of effector lymphocytes and their activity. The anticancer efficacy of αPD-1 antibody was potentiated by co-treatment with STP3725, also confirmed in various tumor models including the K-Ras mutant mouse model, which is highly thrombotic. CONCLUSIONS: Collectively, these findings establish a rationale for a new and translational combination strategy of oral anticoagulation therapy with immunotherapy, especially for treating highly thrombotic cancers. The combination therapy of anticoagulants with immunotherapies can lead to substantial improvements of current approaches in the clinic.


Asunto(s)
Anticoagulantes/uso terapéutico , Hipoxia de la Célula/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Inmunoterapia/métodos , Animales , Anticoagulantes/farmacología , Humanos , Ratones , Microambiente Tumoral
16.
Biomed Pharmacother ; 142: 112042, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403963

RESUMEN

Mesenchymal stem cells (MSCs) therapy has brought a great enthusiasm to the treatment of various immune disorders, tissue regeneration and transplantation therapy. MSCs are being extensively investigated for their immunomodulatory actions. MSCs can deliver immunomodulatory signals to inhibit allogeneic T cell immune responses by downregulating pro-inflammatory cytokines and increasing regulatory cytokines and growth factors. Islet transplantation is a therapeutic alternative to the insulin therapy for the treatment of type 1 diabetes mellitus (T1DM). However, the acute loss of islets due to the lack of vasculature and hypoxic milieu in the immediate post-transplantation period may lead to treatment failure. Moreover, despite the use of potent immunosuppressive drugs, graft failure persists because of immunological rejection. Many in vitro and in vivo researches have demonstrated the multipotency of MSCs as a mediator of immunomodulation and a great approach for enhancement of islet engraftment. MSCs can interact with immune cells of the innate and adaptive immune systems via direct cell-cell contact or through secretomes containing numerous soluble growth and immunomodulatory factors or mitochondrial transfer. This review highlights the interactions between MSCs and different immune cells to mediate immunomodulatory functions along with the importance of MSCs therapy for the successful islet transplantation.


Asunto(s)
Inmunomodulación/inmunología , Trasplante de Islotes Pancreáticos/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Animales , Exosomas/inmunología , Humanos , Linfocitos/inmunología , Esferoides Celulares/inmunología
17.
J Control Release ; 336: 181-191, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144107

RESUMEN

The selective cytotoxicity of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) to cancer cells but not to normal cells makes it an attractive candidate for cancer therapeutics. However, the disadvantages of TRAIL such as physicochemical instability and short half-life limit its further clinical applications. In this study, TRAIL was encapsulated into a novel anti-angiogenic nanocomplex for both improved drug distribution at the tumor site and enhanced anti-tumor efficacy. A nanocomplex was prepared firstly by entrapping TRAIL into PEG-low molecular weight heparin-taurocholate conjugate (LHT7), which is previously known as a potent angiogenesis inhibitor. Then, protamine was added to make a stable form of nanocomplex (PEG-LHT7/TRAIL/Protamine) by exerting electrostatic interactions. We found that entrapping TRAIL into the nanocomplex significantly improved both pharmacokinetic properties and tumor accumulation rate without affecting the tumor selective cytotoxicity of TRAIL. Furthermore, the anti-tumor efficacy of nanocomplex was highly augmented (73.77±4.86%) compared to treating with only TRAIL (18.49 ± 19.75%), PEG-LHT7/Protamine (47.84 ± 14.20%) and co-injection of TRAIL and PEG-LHT7/Protamine (56.26 ± 9.98%). Histological analysis revealed that treatment with the nanocomplex showed both anti-angiogenic efficacy and homogenously induced cancer cell apoptosis, which suggests that accumulated TRAIL and LHT7 in tumor tissue exerted their anti-tumor effects synergistically. Based on this study, we suggest that PEG-LHT7/Protamine complex is an effective nanocarrier of TRAIL for enhancing drug distribution as well as improving anti-tumor efficacy by exploiting the synergistic mechanism of anti-angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Ácido Taurocólico , Apoptosis , Línea Celular Tumoral , Heparina , Polietilenglicoles , Protaminas , Ligando Inductor de Apoptosis Relacionado con TNF
18.
Pharmaceutics ; 13(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808759

RESUMEN

Inflammation is a defense mechanism that protects the body from infections. However, chronic inflammation causes damage to body tissues. Thus, controlling inflammation and investigating anti-inflammatory mechanisms are keys to preventing and treating inflammatory diseases, such as sepsis and rheumatoid arthritis. In continuation with our work related to the discovery of bioactive natural products, a polyphenol, catechin-7,4'-O-digallate (CDG), was isolated from Woodfordia uniflora, which has been used as a sedative and remedy for skin infections in the Dhofar region of Oman. Thus far, no study has reported the anti-inflammatory compounds derived from W. uniflora and the mechanisms underlying their action. To investigate the effects of CDG on the regulation of inflammation, we measured the reduction in nitric oxide (NO) production following CDG treatment in immortalized mouse Kupffer cells (ImKCs). CDG treatment inhibited NO production through the downregulation of inducible nitric oxide synthase expression in lipopolysaccharide (LPS)-stimulated ImKCs. The anti-inflammatory effects of CDG were mediated via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, an important inflammatory-response-associated signaling pathway. Moreover, CDG treatment has regulated the expression of pro-inflammatory cytokines, such as IL-6 and IL-1ß. These results suggested the anti-inflammatory action of CDG in LPS-stimulated ImKCs.

19.
Drug Deliv ; 27(1): 1501-1513, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33107339

RESUMEN

In this study, a system for oral delivery of etoposide (ETP) was designed to avoid the problems associated with low and variable bioavailability of a commercially available ETP emulsion comprised of polyethylene glycol, glycerol, and citric acid anhydrous. ETP was complexed with low-molecular-weight methylcellulose (ETP/LMC) and loaded into a water-in-oil-in-water multiple nanoemulsion to formulate an ETP/LMC-nanoemulsion (ELNE). To further enhance the oral bioavailability, an ionic complex formed by anionic lipid 1,2-didecanoyl-sn-glycero-3-phosphate (sodium salt) and cationic N α-deoxycholyl-l-lysyl-methylester was incorporated into ELNE, yielding ELNE#7. As expected, ELNE#7 showed 4.07- and 2.25-fold increases in artificial membrane and Caco-2/HT29-MTX-E12 permeability (Papp ), respectively, resulting in 224% greater oral bioavailability compared with the commercially available ETP emulsion. In contrast, inhibition of clathrin- and caveola-mediated endocytosis, macropinocytosis, and bile acid transporters by chlorpromazine, genistein, amiloride, and actinomycin D in Caco-2/HT-29-MTX-E12 monolayers reduced the Papp by 45.0%, 20.5%, 28.8%, and 31.1%, respectively. These findings suggest that these routes play important roles in enhancing the oral absorption of ELNE#7. In addition, our mechanistic study suggested that P-glycoprotein did not have an inhibitory effect on the permeation of ELNE#7. Notably, ELNE#7 showed significantly enhanced toxicity in LLC and A549 cells compared with ETP-E. These observations support the improved oral absorption of ETP in ELNE#7, suggesting that it is a better alternative than ETP emulsion.


Asunto(s)
Ácido Desoxicólico/química , Emulsiones/química , Etopósido/química , Lípidos/química , Células A549 , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Línea Celular Tumoral , Ácido Cítrico/química , Ácido Desoxicólico/metabolismo , Emulsiones/metabolismo , Glicerol/química , Células HT29 , Humanos , Absorción Intestinal/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley
20.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33028046

RESUMEN

Cancer therapeutics must be delivered to their targets for improving efficacy and reducing toxicity, though they encounter physiological barriers in the tumor microenvironment. They also face limitations associated with genetic instability and dynamic changes of surface proteins in cancer cells. Nanosized exosomes generated from the endosomal compartment, however, transfer their cargo to the recipient cells and mediate the intercellular communication, which affects malignancy progression, tumor immunity, and chemoresistance. In this review, we give an overview of exosomes' biological aspects and therapeutic potential as diagnostic biomarkers and drug delivery vehicles for oncotherapy. Furthermore, we discuss whether exosomes could contribute to personalized cancer immunotherapy drug design as efficient nanocommunicators.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas/genética , Nanocompuestos/uso terapéutico , Neoplasias/genética , Comunicación Celular/genética , Exosomas/inmunología , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...